

HAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of science Honours in Applied Mathematics		
QUALIFICATION CODE: 35BAMS	LEVEL: 8	
COURSE CODE: PDE 801S	COURSE NAME: PARTIAL DIFFERENTIAL EQUATIONS	
SESSION: JULY 2022	PAPER: THEORY	
DURATION: 3 HOURS	MARKS: 86	

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER	Prof A. S. EEGUNJOBI	
MODERATOR:	Prof O.D. MAKINDE	

INSTRUCTIONS		
	1.	Answer ALL the questions in the booklet provided.
	2.	Show clearly all the steps used in the calculations.
	3.	All written work must be done in blue or black ink and sketches must
		be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

QUESTION 1 [20 marks]

1. (a) From the following equations, form partial differential equations by eliminating the arbitrary contacts g, h and j.

i.

$$z = gxe^y + \frac{g^2e^{2y}}{2} + h$$

ii.

$$z = g(x+y) + h(x-y) + ght + j$$

(b) By eliminating arbitrary functions from the followings, form the partial differential equation

i.

$$z = (x - y)f(x^2 + y^2)$$

ii.

$$f(x^2 - y^2, xyz) = 0.$$

(5)

(5)

(5)

(5)

QUESTION 2 [25 marks]

2. (a) Solve the following differential equations by using Lagrange's method

i.

$$(mz - ny)p + (nx - lz)q = ly - mx$$

(5)

ii.

$$(x^2 - y^2 - yz)p + (x^2 - y^2 - 2z)q = z(x - y)$$

(5)

(b) Solve the following differential equations using Charpit method

i.

$$(p^2 + q^2)y = qz$$

(7)

ii.

$$p = (z + qy)^2$$

(8)

QUESTION 3 [21 marks]

3. (a) Classify, reduce to normal form and hence solve

$$3u_{xx} + 10u_{xy} + 3u_{yy} = 0$$

(b) Classify, reduce to normal form and hence solve

$$u_{xx} + 2u_{xy} + u_{yy} = 0$$

(c) Classify and reduce to normal form

$$y^2 u_{xx} + x^2 u_{yy} = 0$$

(7)

(7)

(7)

QUESTION 4 [20 marks]

- 4. (a) The temperature at one end of a 50cm long bar with insulated sides, is kept at $0^{\circ}C$ and that the other end is kept at $0^{\circ}C$ until steady-state condition prevails. The two ends are then suddenly insulated and kept so. Find the temperature distribution (10)
 - (b) Find the solution of the Cauchy problem

$$u_{tt} - c^2 u_{xx} = 0, x \in \mathbb{R}, t > 0, u(x,0) = f(x), u_t(x,0) = g(x), x \in \mathbb{R}.$$
 (10)

End of Exam!